Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 261
Filtrar
1.
J Neuroinflammation ; 20(1): 248, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37884959

RESUMO

Neuroinflammation contributes to secondary injury cascades following traumatic brain injury (TBI), with alternating waves of inflammation and resolution. Interleukin-1 (IL-1), a critical neuroinflammatory mediator originating from brain endothelial cells, microglia, astrocytes, and peripheral immune cells, is acutely overexpressed after TBI, propagating secondary injury and tissue damage. IL-1 affects blood-brain barrier permeability, immune cell activation, and neural plasticity. Despite the complexity of cytokine signaling post-TBI, we hypothesize that IL-1 signaling specifically regulates neuroinflammatory response components. Using a closed-head injury (CHI) TBI model, we investigated IL-1's role in the neuroinflammatory cascade with a new global knock-out (gKO) mouse model of the IL-1 receptor (IL-1R1), which efficiently eliminates all IL-1 signaling. We found that IL-1R1 gKO attenuated behavioral impairments 14 weeks post-injury and reduced reactive microglia and astrocyte staining in the neocortex, corpus callosum, and hippocampus. We then examined whether IL-1R1 loss altered acute neuroinflammatory dynamics, measuring gene expression changes in the neocortex at 3, 9, 24, and 72 h post-CHI using the NanoString Neuroinflammatory panel. Of 757 analyzed genes, IL-1R1 signaling showed temporal specificity in neuroinflammatory gene regulation, with major effects at 9 h post-CHI. IL-1R1 signaling specifically affected astrocyte-related genes, selectively upregulating chemokines like Ccl2, Ccl3, and Ccl4, while having limited impact on cytokine regulation, such as Tnfα. This study provides further insight into IL-1R1 function in amplifying the neuroinflammatory cascade following CHI in mice and demonstrates that suppression of IL-1R1 signaling offers long-term protective effects on brain health.


Assuntos
Lesões Encefálicas Traumáticas , Traumatismos Cranianos Fechados , Receptores Tipo I de Interleucina-1 , Animais , Camundongos , Lesões Encefálicas Traumáticas/metabolismo , Citocinas/genética , Citocinas/metabolismo , Células Endoteliais/metabolismo , Traumatismos Cranianos Fechados/complicações , Inflamação/metabolismo , Interleucina-1/metabolismo , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Doenças Neuroinflamatórias , Receptores Tipo I de Interleucina-1/metabolismo
2.
J Clin Invest ; 133(22)2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37733448

RESUMO

Monocytes and monocyte-derived macrophages (MDMs) from blood circulation infiltrate glioblastoma (GBM) and promote growth. Here, we show that PDGFB-driven GBM cells induce the expression of the potent proinflammatory cytokine IL-1ß in MDM, which engages IL-1R1 in tumor cells, activates the NF-κB pathway, and subsequently leads to induction of monocyte chemoattractant proteins (MCPs). Thus, a feedforward paracrine circuit of IL-1ß/IL-1R1 between tumors and MDM creates an interdependence driving PDGFB-driven GBM progression. Genetic loss or locally antagonizing IL-1ß/IL-1R1 leads to reduced MDM infiltration, diminished tumor growth, and reduced exhausted CD8+ T cells and thereby extends the survival of tumor-bearing mice. In contrast to IL-1ß, IL-1α exhibits antitumor effects. Genetic deletion of Il1a/b is associated with decreased recruitment of lymphoid cells and loss-of-interferon signaling in various immune populations and subsets of malignant cells and is associated with decreased survival time of PDGFB-driven tumor-bearing mice. In contrast to PDGFB-driven GBM, Nf1-silenced tumors have a constitutively active NF-κB pathway, which drives the expression of MCPs to recruit monocytes into tumors. These results indicate local antagonism of IL-1ß could be considered as an effective therapy specifically for proneural GBM.


Assuntos
Glioblastoma , Interleucina-1beta , Receptores Tipo I de Interleucina-1 , Animais , Humanos , Camundongos , Genótipo , Glioblastoma/metabolismo , Glioblastoma/patologia , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-sis/metabolismo , Receptores de Interleucina-1/metabolismo , Receptores Tipo I de Interleucina-1/metabolismo , Comunicação Parácrina
3.
Cell Mol Biol (Noisy-le-grand) ; 69(5): 163-167, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37571886

RESUMO

Chronic pain is a disease that existed during cancer treatment for a long time. It has been reported that interleukin (IL)-1 is involved in the inflammatory response during tumor development. IL1R1 and IL1R2 are members of the IL-1 receptor family of cytokine receptors. However, few studies have reported the role of chronic pain-related genes, IL1R1, in pan-cancer. In this study, 8 lumbar disc prolapse (LDP) patients and 8 controls with differentially expressed genes were investigated to find chronic pain-related genes. Then, IL1R1 was analyzed using the TCGA database. The clinical survival data from TCGA were used to analyze the prognostic value of IL1R1. This study further evaluated the relationship between IL1R1 and immune checkpoints, immune-activating genes, immunosuppressive genes, chemokines, and chemokine receptors. IL1R1 was expressed in varying degrees in most TCGA tumor types, indicating a better survival status. The expression of IL1R1 is closely related to T cell infiltration, immune checkpoints, immune-activating genes, immunosuppressive genes, chemokines, and chemokine receptors. The results show that IL1R1 is a kind of potential cancer biomarker. Coordination with other immune checkpoints IL1R1k may adjust the immune microenvironment, immunotherapy can be applied to the development of new targeted drugs.


Assuntos
Dor Crônica , Relevância Clínica , Humanos , Dor Crônica/genética , Receptores Tipo I de Interleucina-1/genética , Receptores Tipo I de Interleucina-1/metabolismo , Quimiocinas , Receptores de Quimiocinas , Microambiente Tumoral
4.
Nat Commun ; 13(1): 5347, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36100596

RESUMO

Chronic inflammation is frequently associated with myeloproliferative neoplasms (MPN), but the role of inflammation in the pathogenesis of MPN remains unclear. Expression of the proinflammatory cytokine interleukin-1 (IL-1) is elevated in patients with MPN as well as in Jak2V617F knock-in mice. Here, we show that genetic deletion of IL-1 receptor 1 (IL-1R1) normalizes peripheral blood counts, reduces splenomegaly and ameliorates bone marrow fibrosis in homozygous Jak2V617F mouse model of myelofibrosis. Deletion of IL-1R1 also significantly reduces Jak2V617F mutant hematopoietic stem/progenitor cells. Exogenous administration of IL-1ß enhances myeloid cell expansion and accelerates the development of bone marrow fibrosis in heterozygous Jak2V617F mice. Furthermore, treatment with anti-IL-1R1 antibodies significantly reduces leukocytosis and splenomegaly, and ameliorates bone marrow fibrosis in homozygous Jak2V617F mice. Collectively, these results suggest that IL-1 signaling plays a pathogenic role in MPN disease progression, and targeting of IL-1R1 could be a useful strategy for the treatment of myelofibrosis.


Assuntos
Janus Quinase 2/metabolismo , Transtornos Mieloproliferativos , Neoplasias , Mielofibrose Primária , Animais , Inflamação/genética , Interleucina-1 , Janus Quinase 2/genética , Camundongos , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/patologia , Mielofibrose Primária/genética , Receptores Tipo I de Interleucina-1/metabolismo , Esplenomegalia/genética
5.
Biochem Biophys Res Commun ; 620: 21-28, 2022 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-35777130

RESUMO

Myeloid-derived suppressor cells (MDSCs) mobilize and migrate from bone marrow to peripheral tissues or immune organs, which is associated with poor prognosis in sepsis. Intervention of MDSCs might be a potential target for the effective treatment of sepsis. In the present study, we demonstrated that IL-1R1 blockade with either recombinant human IL-1R antagonist Anakinra or IL-1R1 deficiency had a protective effect on the liver injury in septic mice. The possible mechanism was that Anakinra treatment and IL-1R1 knockout inhibited the migration of MDSCs to the liver in sepsis, thus attenuating the immune suppression of MDSCs on effector T cells characterized with the decrease in proportion of CD4+ and CD8+ T cells. Furthermore, the switch from pro-inflammatory M1 macrophage to anti-inflammatory M2 phenotype and the ability of bacterial clearance in the liver of septic mice were enhanced obviously by Anakinra and IL-1R1 deficiency, which contributes to the attenuated liver injury. Taken together, these findings provide new ideas for revealing the relationship between IL-1R1 and MDSCs in sepsis, thereby providing a potentially effective target for ameliorating septic liver injury.


Assuntos
Células Supressoras Mieloides , Receptores Tipo I de Interleucina-1/metabolismo , Sepse , Animais , Linfócitos T CD8-Positivos , Humanos , Proteína Antagonista do Receptor de Interleucina 1/farmacologia , Proteína Antagonista do Receptor de Interleucina 1/uso terapêutico , Fígado , Camundongos , Camundongos Endogâmicos C57BL , Sepse/tratamento farmacológico
6.
Nat Commun ; 13(1): 884, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35173157

RESUMO

Mechanisms underlying variability in transmission of Mycobacterium tuberculosis strains remain undefined. By characterizing high and low transmission strains of M.tuberculosis in mice, we show here that high transmission M.tuberculosis strain induce rapid IL-1R-dependent alveolar macrophage migration from the alveolar space into the interstitium and that this action is key to subsequent temporal events of early dissemination of bacteria to the lymph nodes, Th1 priming, granulomatous response and bacterial control. In contrast, IL-1R-dependent alveolar macrophage migration and early dissemination of bacteria to lymph nodes is significantly impeded in infection with low transmission M.tuberculosis strain; these events promote the development of Th17 immunity, fostering neutrophilic inflammation and increased bacterial replication. Our results suggest that by inducing granulomas with the potential to develop into cavitary lesions that aids bacterial escape into the airways, high transmission M.tuberculosis strain is poised for greater transmissibility. These findings implicate bacterial heterogeneity as an important modifier of TB disease manifestations and transmission.


Assuntos
Macrófagos Alveolares/imunologia , Mycobacterium tuberculosis/imunologia , Receptores Tipo I de Interleucina-1/metabolismo , Células Th17/imunologia , Tuberculose Pulmonar/transmissão , Animais , Movimento Celular/imunologia , Células Dendríticas/imunologia , Feminino , Linfonodos/imunologia , Linfonodos/microbiologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C3H , Alvéolos Pulmonares/citologia , Alvéolos Pulmonares/imunologia , Alvéolos Pulmonares/microbiologia , Transdução de Sinais/imunologia , Células Th1/imunologia , Tuberculose Pulmonar/imunologia
7.
J Immunother Cancer ; 10(2)2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35110359

RESUMO

BACKGROUND: With the essential role of interleukin-1 signaling in cancer-related inflammation, IL-1R1, the main receptor for both IL-1α and IL-1ß, demonstrated therapeutic potential in several types of cancer, which has been put into clinical trials. However, the expression profile and critical role of IL-1R1 in gastric cancer (GC) remain obscure. This study aimed to investigate the prognostic significance of IL-1R1 expression and its predictive value for chemotherapy and immunotherapy in GC. METHODS: The study enrolled three cohorts, consisting of 409 tumor microarray specimens of GC patients from Zhongshan Hospital, 341 transcriptional data from The Cancer Genome Atlas, and 45 transcriptional data from patients treated with pembrolizumab. IL-1R1 mRNA expression was directly acquired from public datasets, and we also detected IL-1R1 protein expression on tumor microarray by immunohistochemistry. Finally, the associations of IL-1R1 expression with clinical outcomes, immune contexture, and genomic features were analyzed. RESULTS: High IL-1R1 expression predicted poor prognosis and inferior responsiveness to both 5-fluorouracil-based adjuvant chemotherapy (ACT) and immune checkpoint blockade (ICB). IL-1R1 fostered an immunosuppressive microenvironment characterized by upregulated M2 macrophages and exhausted CD8+ T cells infiltration. Moreover, the expression of IL-1R1 was intrinsically linked to genomic alterations associated with targeted therapies in GC. CONCLUSIONS: IL-1R1 served as an independent prognosticator and predictive biomarker for ACT and ICB in GC. Furthermore, IL-1R1 antagonists could be a novel agent alone or combined with current therapeutic strategies in GC.


Assuntos
Biomarcadores Tumorais/metabolismo , Imunoterapia/métodos , Receptores Tipo I de Interleucina-1/metabolismo , Neoplasias Gástricas/tratamento farmacológico , Estudos de Coortes , Feminino , Humanos , Masculino , Neoplasias Gástricas/patologia
8.
PLoS One ; 17(2): e0263151, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35157702

RESUMO

The expression of TNF-Receptor Associated Factor 6 (TRAF6) is essential for many physiological processes. Here we studied the phenotype of TRAF6[L74H] knock-in mice which are devoid of TRAF6 E3 ligase activity in every cell of the body, but express normal levels of the TRAF6 protein. Remarkably, TRAF6[L74H] mice have none of the phenotypes seen in TRAF6 KO mice. Instead TRAF6[L74H] mice display an entirely different phenotype, exhibiting autoimmunity, and severe inflammation of the skin and modest inflammation of the liver and lungs. Similar to mice with a Treg-specific knockout of TRAF6, or mice devoid of TRAF6 in all T cells, the CD4+ and CD8+ T cells in the spleen and lymph nodes displayed an activated effector memory phenotype with CD44high/CD62Llow expression on the cell surface. In contrast, T cells from WT mice exhibited the CD44low/CD62Lhigh phenotype characteristic of naïve T cells. The onset of autoimmunity and autoinflammation in TRAF6[L74H] mice (two weeks) was much faster than in mice with a Treg-specific knockout of TRAF6 or lacking TRAF6 expression in all T cells (2-3 months) and we discuss whether this may be caused by secondary inflammation of other tissues. The distinct phenotypes of mice lacking TRAF6 expression in all cells appears to be explained by their inability to signal via TNF Receptor Superfamily members, which does not seem to be impaired significantly in TRAF6[L74H] mice.


Assuntos
Doenças Autoimunes/patologia , Receptores Tipo I de Interleucina-1/metabolismo , Fator 6 Associado a Receptor de TNF/genética , Fator 6 Associado a Receptor de TNF/metabolismo , Receptores Toll-Like/metabolismo , Animais , Doenças Autoimunes/genética , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Dermatite/genética , Dermatite/patologia , Técnicas de Introdução de Genes , Camundongos , Camundongos Knockout , Fenótipo , Pneumonia/genética , Pneumonia/patologia , Transdução de Sinais
9.
Cytokine ; 151: 155811, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35091314

RESUMO

BACKGROUND: Aging is associated with metabolic and structural changes causing heart failure with preserved ejection fraction (HFpEF). Interleukin-1 (IL-1) is a pro-inflammatory cytokine involved in aging-related inflammation. OBJECTIVE: We sought to determine whether IL-1 mediates aging-related changes in the heart, as seen in HFpEF. METHODS: We studied age-matched young (4-month-old), middle-aged (14-month-old), and old (23-month-old) wild-type (WT) C57BL/6J and IL-1 receptor type I deficient (IL1RI-KO) male mice. Echocardiography was used to evaluate left ventricular (LV) dimensions and systolic/diastolic function, and a pressure transducer was used to measure the LV end-diastolic pressure. Picrosirius red stain was used to assess for myocardial interstitial fibrosis (MIF) at pathology. RESULTS: WT and IL-1RIKO mice showed a normal cardiac phenotype at young age, without any differences between the two groups. With aging, the WT mice developed LV concentric hypertrophy (as measured by a significant increase in LV mass [+42%, P < 0.01] and relative wall thickness [+34%, P < 0.01]), whereas the aging IL-1RI-KO mice did not. With aging, the WT mice also developed diastolic dysfunction (as measured by a significant increase in isovolumetric relaxation time [+148%, P < 0.01] and a significantly higher LV end-diastolic pressure [+174%, P < 0.01]), whereas the aging IL1RI-KO did not. Aged WT mice showed a significant increase in MIF (+124%, P < 0.01) at cardiac pathology, whereas the aging IL-1RI-KO did not. CONCLUSIONS: Genetically-modified mice lacking the IL-1RI receptor, not responsive to IL-1, are protected from aging-related LV hypertrophy, fibrosis, and diastolic dysfunction. These data support a central role of IL-1 in the pathophysiology of aging-related HFpEF.


Assuntos
Cardiomiopatias , Insuficiência Cardíaca , Receptores Tipo I de Interleucina-1 , Fatores Etários , Envelhecimento , Animais , Cardiomiopatias/genética , Cardiomiopatias/metabolismo , Cardiomiopatias/patologia , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores Tipo I de Interleucina-1/metabolismo , Volume Sistólico/fisiologia , Disfunção Ventricular Esquerda/genética , Disfunção Ventricular Esquerda/metabolismo , Disfunção Ventricular Esquerda/patologia
10.
Am J Physiol Renal Physiol ; 322(2): F164-F174, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34894725

RESUMO

Interleukin (IL)-1 receptor type 1 (IL-1R1) activation triggers a proinflammatory signaling cascade that can exacerbate kidney injury. However, the functions of podocyte IL-1R1 in glomerular disease remain unclear. To study the role of IL-1R1 signaling in podocytes, we selectively ablated podocyte IL-1R1 in mice (PKO mice). We then subjected PKO mice and wild-type controls to two glomerular injury models: nephrotoxic serum (NTS)- and adriamycin-induced nephropathy. Surprisingly, we found that IL-1R1 activation in podocytes limited albuminuria and podocyte injury during NTS- and adriamycin-induced nephropathy. Moreover, deletion of IL-1R1 in podocytes drove podocyte apoptosis and glomerular injury through diminishing Akt activation. Activation of Akt signaling abrogated the differences in albuminuria and podocyte injury between wild-type and PKO mice during NTS. Thus, IL-1R1 signaling in podocytes limits susceptibility to glomerular injury via an Akt-dependent signaling pathway. These data identify an unexpected protective role for IL-1R1 signaling in podocytes in the pathogenesis of glomerular disease.NEW & NOTEWORTHY The present study establishes that activation of the receptor for interleukin-1 limits susceptibility to damage to the kidney glomerulus in preclinical mouse models by stimulating Akt signaling cascades inside the podocyte.


Assuntos
Glomerulonefrite/metabolismo , Podócitos/metabolismo , Proteinúria/metabolismo , Receptores Tipo I de Interleucina-1/metabolismo , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Modelos Animais de Doenças , Doxorrubicina , Glomerulonefrite/induzido quimicamente , Glomerulonefrite/patologia , Glomerulonefrite/prevenção & controle , Humanos , Interleucina-1beta/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Camundongos da Linhagem 129 , Camundongos Knockout , Podócitos/efeitos dos fármacos , Podócitos/patologia , Proteinúria/induzido quimicamente , Proteinúria/patologia , Proteinúria/prevenção & controle , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Tipo I de Interleucina-1/agonistas , Receptores Tipo I de Interleucina-1/genética , Transdução de Sinais
11.
J Biomol Struct Dyn ; 40(6): 2575-2585, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-33124956

RESUMO

Interleukin 1 Receptor type I (IL-1RI) is a multi-domain transmembrane receptor that triggers the inflammatory response. Understanding its detailed mechanism of action is crucial for treating immune disorders. IL-1RI is activated upon formation of its functional assembly that occurs by binding of the IL-1 cytokine and the accessory protein (Il-1RAcP) to it. X-ray crystallography, small-Angle X-ray Scattering and molecular dynamics simulation studies showed that IL-1RI adopts two types of 'compact' and 'extended' conformational states in its dynamical pattern. Furthermore, glycosylation has shown to play a critical role in its activation process. Here, classical and accelerated atomistic molecular dynamics were carried out to examine the role of full glycosylation of IL-1RI and IL-1RAcP in arrangement of the functional assembly. Simulations showed that the 'compact' and 'extended' IL-1RI form two types of 'cytokine-inaccessible-non-signaling' and 'cytokine-accessible-signaling' assemblies with the IL-1RacP, respectively that are both abiding in the presence of glycans. Suggesting that the cytokine binding to IL-1RI is not required for the formation of IL-1RI-IL-1RAcP complex and the 'compact' complex could act as a down-regulatory mechanism. The 'extended' complex is maintained by formation of several persistent hydrogen bonds between the IL-1RI-IL-1RAcP inter-connected glycans. Taken together, it was shown that full glycosylation regulates formation of the IL-1RI functional assembly and play critical role in cytokine biding and triggering the IL-1RI involved downstream pathways in the cell.Communicated by Ramaswamy H. Sarma.


Assuntos
Proteína Acessória do Receptor de Interleucina-1 , Receptores Tipo I de Interleucina-1 , Citocinas/metabolismo , Imunidade , Proteína Acessória do Receptor de Interleucina-1/química , Proteína Acessória do Receptor de Interleucina-1/metabolismo , Polissacarídeos , Ligação Proteica , Receptores Tipo I de Interleucina-1/química , Receptores Tipo I de Interleucina-1/metabolismo
12.
Mol Hum Reprod ; 27(12)2021 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-34915564

RESUMO

Decorin, a small leucine-rich proteoglycan produced by decidual cells restrains trophoblast differentiation, migration and invasiveness of extra-villous trophoblast cells. Decidual overproduction of decorin is associated with preeclampsia, and elevated decorin levels in maternal plasma are a predictive biomarker of preeclampsia. Furthermore, decorin plays an autocrine role in maturation of human endometrial stromal cells into decidual cells. Thus, a balanced decorin production by the decidua is critical for healthy pregnancy. However, the molecular mechanisms regulating decorin production by the decidua are unclear. Interleukin-1 beta is an inflammation-associated multi-functional cytokine, and is reported to induce decidualization in primates. Hence, the present study was designed: (i) to test if exogenous Interleukin-1 beta stimulated decorin production by human endometrial stromal cells; and if so, (ii) to identify the cellular source of Interleukin-1 beta in first trimester decidual tissue; (iii) to identify the downstream molecular partners in Interleukin-1 beta mediated decorin production by human endometrial stromal cells. Results revealed that (i) amongst multiple pro-inflammatory cytokines tested, Interleukin-1 beta alone stimulated decorin production by these cells; (ii) both macrophages and decidual cells in first trimester decidua produced Interleukin-1 beta; (iii) Interleukin-1 beta mediated decorin production was dependent on Interleukin-1 receptor activation, followed by activation and nuclear translocation of nuclear factor kappa B and its binding to the decorin promoter. These results reveal that Interleukin-1 beta plays a novel role in inducing decorin production by human endometrial stromal cells by activating nuclear factor kappa B.


Assuntos
Decídua/efeitos dos fármacos , Decorina/metabolismo , Interleucina-1beta/farmacologia , Macrófagos/efeitos dos fármacos , Receptores Tipo I de Interleucina-1/agonistas , Células Estromais/efeitos dos fármacos , Transporte Ativo do Núcleo Celular , Sítios de Ligação , Linhagem Celular , Decídua/metabolismo , Decorina/genética , Feminino , Humanos , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , NF-kappa B/metabolismo , Gravidez , Primeiro Trimestre da Gravidez , Regiões Promotoras Genéticas , Receptores Tipo I de Interleucina-1/metabolismo , Células Estromais/metabolismo , Regulação para Cima
13.
Int J Mol Sci ; 22(21)2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34768839

RESUMO

Our earlier findings revealed that interleukin-1 receptor type-1 (IL-1R1) was overexpressed in spinal neurons, and IL-1R1-deficient mice showed significant attenuation of thermal and mechanical allodynia during the course of the Complete Freund adjuvant (CFA)-induced persistent pain model. In the present study, we found that a ligand of IL-1R1, termed interleukin-1ß (IL-1ß), is also significantly overexpressed at the peak of mechanical pain sensitivity in the CFA-evoked pain model. Analysis of cellular distribution and modeling using IMARIS software showed that in the lumbar spinal dorsal horn, IL-1ß is significantly elevated by astrocytic expression. Maturation of IL-1ß to its active form is facilitated by the formation of the multiprotein complex called inflammasome; thus, we tested the expression of NOD-like receptor proteins (NLRPs) in astrocytes. At the peak of mechanical allodynia, we found expression of the NLRP2 inflammasome sensor and its significantly elevated co-localization with the GFAP astrocytic marker, while NLRP3 was moderately present and NLRP1 showed total segregation from the astrocytic profiles. Our results indicate that peripheral CFA injection induces NLRP2 inflammasome and IL-1ß expression in spinal astrocytes. The release of mature IL-1ß can contribute to the maintenance of persistent pain by acting on its neuronally expressed receptor, which can lead to altered neuronal excitability.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Astrócitos/metabolismo , Hiperalgesia/metabolismo , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Astrócitos/fisiologia , Adjuvante de Freund/farmacologia , Expressão Gênica/genética , Hiperalgesia/fisiopatologia , Inflamassomos/metabolismo , Inflamação/metabolismo , Interleucina-1beta/metabolismo , Masculino , Neurônios/metabolismo , Dor/metabolismo , Dor/fisiopatologia , Limiar da Dor/fisiologia , Ratos , Ratos Endogâmicos WKY , Receptores Tipo I de Interleucina-1/metabolismo , Medula Espinal/metabolismo , Corno Dorsal da Medula Espinal/metabolismo
14.
Biomarkers ; 26(8): 788-807, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34704882

RESUMO

CONTEXT: Rheumatoid arthritis (RA) is a chronic, progressive autoimmune disease characterized by aggressive and systematic polyarthritis. OBJECTIVE: The present study aimed to isolate and identify the phenolic constituents in Brassica oleracea L. (Brassicaceae) seeds methanolic extract and evaluates its effect against rheumatoid arthritis in rats referring to the new therapy; interleukin-1 receptor antagonist (IL-1RA). MATERIALS AND METHODS: The GC/MS profiling of the plant was determined. Arthritis induction was done using complete Freund's adjuvant. Arthritis severity was assessed by percentage of edema and arthritis index. IL-1 receptor type I gene expression, interleukin-1ß (IL-1ß), oxidative stress markers, protein content, inflammatory mediators, prostaglandin-E2 (PGE2), genetic abnormalities and the histopathological features of ankle joint were evaluated. RESULTS: For the first time twelve phenolic compounds had been isolated from the seeds extract. Treatment with extract and IL-1RA improved the tested parameters by variable degrees. CONCLUSIONS: RA is an irreversible disease, where its severity increases with the time of induction. Brassica oleracea L. seeds extract is considered as a promising anti-arthritis agent. IL-1 RA may be considered as an unusual therapeutic agent for RA disease. More studies are needed to consider the seeds extract as a nutraceutical agent and to recommend IL-1RA as a new RA drug.


Assuntos
Artrite Experimental/prevenção & controle , Artrite Reumatoide/prevenção & controle , Brassica/química , Mediadores da Inflamação/metabolismo , Compostos Fitoquímicos/farmacologia , Receptores Tipo I de Interleucina-1/antagonistas & inibidores , Sementes/química , Animais , Artrite Experimental/induzido quimicamente , Artrite Experimental/metabolismo , Artrite Reumatoide/genética , Artrite Reumatoide/metabolismo , Biomarcadores/sangue , Adjuvante de Freund , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Proteína Antagonista do Receptor de Interleucina 1/metabolismo , Interleucina-1beta/metabolismo , Masculino , Estrutura Molecular , Estresse Oxidativo/efeitos dos fármacos , Compostos Fitoquímicos/química , Fitoterapia/métodos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Ratos Wistar , Receptores Tipo I de Interleucina-1/genética , Receptores Tipo I de Interleucina-1/metabolismo , Transdução de Sinais/efeitos dos fármacos
16.
Front Immunol ; 12: 688254, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34093593

RESUMO

Several barriers separate the central nervous system (CNS) from the rest of the body. These barriers are essential for regulating the movement of fluid, ions, molecules, and immune cells into and out of the brain parenchyma. Each CNS barrier is unique and highly dynamic. Endothelial cells, epithelial cells, pericytes, astrocytes, and other cellular constituents each have intricate functions that are essential to sustain the brain's health. Along with damaging neurons, a traumatic brain injury (TBI) also directly insults the CNS barrier-forming cells. Disruption to the barriers first occurs by physical damage to the cells, called the primary injury. Subsequently, during the secondary injury cascade, a further array of molecular and biochemical changes occurs at the barriers. These changes are focused on rebuilding and remodeling, as well as movement of immune cells and waste into and out of the brain. Secondary injury cascades further damage the CNS barriers. Inflammation is central to healthy remodeling of CNS barriers. However, inflammation, as a secondary pathology, also plays a role in the chronic disruption of the barriers' functions after TBI. The goal of this paper is to review the different barriers of the brain, including (1) the blood-brain barrier, (2) the blood-cerebrospinal fluid barrier, (3) the meningeal barrier, (4) the blood-retina barrier, and (5) the brain-lesion border. We then detail the changes at these barriers due to both primary and secondary injury following TBI and indicate areas open for future research and discoveries. Finally, we describe the unique function of the pro-inflammatory cytokine interleukin-1 as a central actor in the inflammatory regulation of CNS barrier function and dysfunction after a TBI.


Assuntos
Barreira Hematoencefálica/metabolismo , Barreira Hematorretiniana/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Mediadores da Inflamação/metabolismo , Inflamação/metabolismo , Interleucina-1/metabolismo , Meninges/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/imunologia , Barreira Hematoencefálica/patologia , Barreira Hematorretiniana/efeitos dos fármacos , Barreira Hematorretiniana/imunologia , Barreira Hematorretiniana/patologia , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/imunologia , Lesões Encefálicas Traumáticas/patologia , Humanos , Inflamação/tratamento farmacológico , Inflamação/imunologia , Inflamação/patologia , Mediadores da Inflamação/antagonistas & inibidores , Interleucina-1/antagonistas & inibidores , Meninges/efeitos dos fármacos , Meninges/imunologia , Meninges/patologia , Receptores Tipo I de Interleucina-1/metabolismo , Transdução de Sinais
17.
J Neuroinflammation ; 18(1): 97, 2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33879157

RESUMO

BACKGROUND: Our previous study indicated that hypoxic preconditioning reduced receptor interacting protein (RIP) 3-mediated necroptotic neuronal death in hippocampal CA1 of adult rats after transient global cerebral ischemia (tGCI). Although mixed lineage kinase domain-like (MLKL) has emerged as a crucial molecule for necroptosis induction downstream of RIP3, how MLKL executes necroptosis is not yet well understood. In this study, we aim to elucidate the molecular mechanism underlying hypoxic preconditioning that inactivates MLKL-dependent neuronal necroptosis after tGCI. METHODS: Transient global cerebral ischemia was induced by the four-vessel occlusion method. Twenty-four hours before ischemia, rats were exposed to systemic hypoxia with 8% O2 for 30 min. Western blotting was used to detect the expression of MLKL and interleukin-1 type 1 receptor (IL-1R1) in CA1. Immunoprecipitation was used to assess the interactions among IL-1R1, RIP3, and phosphorylated MLKL (p-MLKL). The concentration of intracellular free calcium ion (Ca2+) was measured using Fluo-4 AM. Silencing and overexpression studies were used to study the role of p-MLKL in tGCI-induced neuronal death. RESULTS: Hypoxic preconditioning decreased the phosphorylation of MLKL both in neurons and microglia of CA1 after tGCI. The knockdown of MLKL with siRNA decreased the expression of p-MLKL and exerted neuroprotective effects after tGCI, whereas treatment with lentiviral delivery of MLKL showed opposite results. Mechanistically, hypoxic preconditioning or MLKL siRNA attenuated the RIP3-p-MLKL interaction, reduced the plasma membrane translocation of p-MLKL, and blocked Ca2+ influx after tGCI. Furthermore, hypoxic preconditioning downregulated the expression of IL-1R1 in CA1 after tGCI. Additionally, neutralizing IL-1R1 with its antagonist disrupted the interaction between IL-1R1 and the necrosome, attenuated the expression and the plasma membrane translocation of p-MLKL, thus alleviating neuronal death after tGCI. CONCLUSIONS: These data support that the inhibition of MLKL-dependent neuronal necroptosis through downregulating IL-1R1 contributes to neuroprotection of hypoxic preconditioning against tGCI.


Assuntos
Regulação para Baixo , Hipóxia/metabolismo , Ataque Isquêmico Transitório/metabolismo , Necroptose , Neuroproteção , Proteínas Quinases/metabolismo , Receptores Tipo I de Interleucina-1/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/fisiopatologia , Região CA1 Hipocampal/metabolismo , Técnicas de Silenciamento de Genes , Precondicionamento Isquêmico , Masculino , Fármacos Neuroprotetores , Fosforilação , Ratos , Ratos Wistar , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
18.
Mol Reprod Dev ; 88(4): 274-286, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33719101

RESUMO

In mammals, the phenomenon of blastocyst hatching is an essential prerequisite for successful implantation. Blastocyst hatching is regulated by various molecules. Of them, cytokines, expressed by preimplantation embryos, are thought to be functionally important in blastocyst development and hatching, but their mechanistic roles are not clearly understood. Here, we examined the involvement of two cytokines, namely, interleukin-1ß (IL-1ß) and its natural antagonist, IL-1ra, in blastocyst hatching in the golden hamster. Blastocysts expressed both cytokines and their receptor, IL-1rt1. Supplementation of IL-1ß to cultured eight-cell embryos improved blastocyst hatching (84.1% ± 4.2% vs. 66.6% ± 6.8%; treated vs. control). This improvement was diminished by IL-1ra treatment (23.6% ± 12.9% vs. 76.4% ± 12.9%; treated vs. control). Interestingly, IL-1ß-treated embryos showed increased messenger RNA expression of zonalytic proteases, that is, cathepsin-L and -B by 1.9 ± 0.5- and 3.5 ± 0.1-folds, respectively. This was accompanied by their increased enzyme activities; cathepsin-L by 2.8 ± 0.7 fold and -B by 2.3 ± 0.7-fold. Strikingly, proteases and IL-1ß were intensely colocalized to trophectodermal projections of hatching blastocysts. This is the first report to show the involvement of embryonic IL-1ß in regulating hatching-associated proteases required for blastocyst hatching.


Assuntos
Blastocisto/metabolismo , Catepsina B/metabolismo , Catepsina L/metabolismo , Implantação do Embrião/efeitos dos fármacos , Interleucina-1beta/metabolismo , Interleucina-1beta/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Catepsina B/genética , Catepsina L/genética , Cricetinae , Ativação Enzimática/efeitos dos fármacos , Feminino , Expressão Gênica/efeitos dos fármacos , Proteína Antagonista do Receptor de Interleucina 1/metabolismo , Proteína Antagonista do Receptor de Interleucina 1/farmacologia , Gravidez , RNA Mensageiro/genética , Receptores Tipo I de Interleucina-1/metabolismo
19.
Sci Rep ; 11(1): 685, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436947

RESUMO

Familial Mediterranean fever (FMF); is an autosomal recessively inherited autoinflammatory disease caused by the mutations in the Mediterranean Fever (MEFV) gene. Recent studies have shown that epigenetic control mechanisms, particularly non-coding RNAs, may play a role in the pathogenesis of autoinflammation. microRNAs (miRNAs) are small non-coding RNAs that play critical roles in regulating host gene expression at the post-transcriptional level. The phenotypic heterogeneity of FMF disease suggests that FMF may not be a monogenic disease, suggesting that epigenetic factors may affect phenotypic presentation. Here we examined the potential anti-inflammatory effect of miR-197-3p, which is a differentially expressed miRNA in FMF patients, by using inflammation related functional assays. We monitored gene expression levels of important cytokines, as well as performed functional studies on IL-1ß secretion, caspase-1 activation, apoptosis assay, and cell migration assay. These experiments were used to evaluate the different stages of inflammation following pre-miR-197 transfection. Anti-miR-197 transfections were performed to test the opposite effect. 3'UTR luciferase activity assay was used for target gene studies. Our results obtained by inflammation-related functional assays demonstrated an anti-inflammatory effect of miR-197-3p in different cell types (synovial fibroblasts, monocytes, macrophages). 3'UTR luciferase activity assay showed that miR-197-3p directly binds to the interleukin-1beta (IL-1ß) receptor, type I (IL1R1) gene, which is one of the key molecules of the inflammatory pathways. This study may contribute to understand the role of miR-197-3p in autoinflammation process. Defining the critical miRNAs may guide the medical community in a more personalized medicine in autoinflammatory diseases.


Assuntos
Febre Familiar do Mediterrâneo , Fibroblastos/imunologia , Inflamação/imunologia , MicroRNAs/genética , Monócitos/imunologia , Receptores Tipo I de Interleucina-1/metabolismo , Sinoviócitos/imunologia , Apoptose , Movimento Celular , Proliferação de Células , Fibroblastos/metabolismo , Fibroblastos/patologia , Perfilação da Expressão Gênica , Humanos , Inflamação/metabolismo , Inflamação/patologia , Monócitos/metabolismo , Monócitos/patologia , Receptores Tipo I de Interleucina-1/genética , Sinoviócitos/metabolismo , Sinoviócitos/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...